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Abstract. An approximate expression for the time-dependent longitudinal correlation 
function is given. It gives exact results in the limiting cases where the transverse field, or the 
exchange interaction, is zero. It is also shown that for arbitrary va!ues of these parameters 
the approximation is only valid in the high-temperature limit. Some results are presented 
for the time-dependent and frequency transform of the spatial Fourier transform. 

1. Introduction 

The one-dimensional transverse Ising model (s = t ,  closed chain) is among the few 
many-body problems which can be solved exactly. Apart from that it has been used in 
the description of a large number of systems (Stinchcombe 1973). The one-dimen- 
sional model has received particularly great attention in recent years motivated by the 
discovery of the so-called quasi-one-dimensional systems (Zeller 1973). In the 
description of these systems the one-dimensional solution plays an important role due 
to the large anisotropy present (Sato 1961, Stout and Chisholm 1962). 

The model is a particular case of the X Y  model (case of extreme anisotropy) 
introduced by Lieb et a1 (1961), and has been studied by many authors. The ther- 
modynamic properties have been discussed in detail at T = 0 by Pfeuty (1970) and at 
finite temperature by Barouch and McCoy (1971). 

Although the model is exactly soluble there are great difficulties in the calculation of 
some time-dependent correlation functions. These difficulties have been indicated by 
McCoy eta1 (1971) and discussed in detail by Capel eta1 (1974). Niemeijer (1967) and 
Tommet and Huber (1975) have calculated the transversal time-dependent correlation 
function at any temperature. The information about the time-dependent longitudinal 
correlation function is restricted to zero temperature and large separation between 
spins (McCoy et a1 1971, Abraham 1972), short time expansion in the high-tempera- 
ture limit (Capel et a1 1974), and the exact result at infinite temperature (Brandt and 
Jacoby 1976, Capel and Perk 1977). 

The purpose of this paper is to present in more detail an approximation to calculate 
these correlations at any temperature (Gonsalves and Elliott l9,77). This approxima- 
tion is an improvement over the so-called c-cyclic approximation (Mazur and Siskens 
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224 L L Goncalves 

1973, 1974). It gives the correct answer in special cases, namely when the exchange or 
the transverse field is zero. 

In 0 2 we present a review concerning the basic results and the difficulties of the 
calculation. In 0 3 we calculate the correlations in the framework of the c-cyclic 
approximation and in 0 4  we repeat the calculation in the framework of the new 
approach called the improved c-cyclic approximation. Finally in 0 5 the results are 
presented and discussed. 

2. Basic results 

The Hamiltonian of the system can be written in the form 
N N 

H =  2JS;S;+l- hSf 
j=l j = l  

where 

SI = SR+l, v = x ,  y, z 

and SP are half the Pauli spin matrices. 
Introducing the lowering and raising operators (Lieb et a1 1961) 

(3) a t  = sx + i s ?  a .  I sx 1 - i s ?  1 ,  
I 1 1 ,  

in terms of which the Pauli spin operators are 

(4) S ?  = ais, -1 s; = (af + U j ) / 2 ,  Siy = (af - aj)/2i, 1 1 1  2 ,  

we obtain 

Then if we introduce the Jordan-Wigner transformation (Jordan and Wigner 1928) 
defined by 

j-1 

a7 =exp[in c ~ c 1 ] c ~ ;  a: = c:, (6) 

where c’s are fermion operators, the Hamiltonian (1) is written as (McCoy et a1 1971) 

where P+ and P- are given by 

and H+ and H- are: 

(9) J + +  1 N-1 N 
H * = -  J(cfcj+l+cfcT+l +HC)- h( C j  + C j - -  ’) T - ( C p $ 1  +HC). 

2 j= l  j- 1 2 2  

The previous result is equal to that of McCoy er a1 (197 1) when y is considered equal to 
one. 
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The operator P defined in equation (8) satisfies the relations 

[P, HI = [P,  H’] = 0, P 2  = I, (101, (11) 
and from these we conclude that P’ and P- are projector operators for states with 
positive and negative parity respectively, and the eigenstates of the total Hamiltonian 
are the eigenstates of H+ with positive parity and the eigenstates of H -  with negative 
parity. 

The Hamiltonians H C  and H -  differ by a boundary term (Cape1 et a1 1974), 

H - - H + = B = J ( c ~ ~ + c ~ ~ + H c ) ,  (12) 
and they do not commute. Since they constitute bilinear forms on fermion operators, 
they can easily be diagonalised separately. The important step in this procedure is the 
imposition of boundary conditions on c operators, which should be anticyclic when 
diagonalising H’ and cyclic when diagonalising H-.  

Defining the Fourier transform of c; as 
1 

where a is the lattice parameter, the boundary conditions imply that the allowed values 
of k are given by 

k = *27r(n + ; ) /Nu  (14) 
in the anticyclic case, and by 

k = *2rrn/Na 

in the cyclic case, where n runs over integers from 0 to N / 2  ( N  is assumed even for 
convenience). By introducing the Fourier transform in equation (9) and the Bogoliu- 
bov-Valatin transformation (Bogoliubov 1959, Valatin 196 1) 

the inverse of which is 

we obtain 

where 

Ek = [ (J  cos ka - h)’+ J~ sin2 ka]1 /2  (19) 
and the signs + and - in equation (18) hold for k’s given by equations (14) and (15) 
respectively. The x’s and y ’ s  in equations (16) and (17) are given by 

X k  = i J  Sin ka/[2Ek(Ek - € k ) ] * ” ,  (20) 



226 L L Goncalves 

Using the results 

[P", H"] = 0, 

(P'y = P', 

f ( H )  =f(H+)P+ +f(H-)P-, 

P'Si" = s; P', 

p+p- = p-p+ = 0, 

where f(z) is an analytic function of t, and 

the time-dependent longitudinal correlation function (S; (t)S?+,, (0)) is given by 

Tr[P- exp( - PH-) exp(iH-t)S; exp(iH't)Si",,] 
+ Tr[P' exp( - PH+) exp(iH+t)S; exp( - iH-f)S;+,,] 
Tr[P+ exp( -PH+)]+Tr[P- exp(-PH-)] (27) (s;(t)S;+,,(o)) = 

where Tr stands for trace. 

be written as 
In the limit N + CO, Capel et a1 (1974) have shown that the previous expression can 

where the trace is calculated over the eigenstates of H-.  
Naturally the evaluation of equation (28) is very difficult since the time evolution is 

given by two different Hamiltonians. McCoy et a1 (1971) have avoided these difficulties 
by calculating the four-spin correlation function and using the cluster property: 

lim ( s ; + N ~  ( ~ ) S ; - , + N ( ~ ) S ;  (O)S; - ,+N/~ (0)) = (S; (t)S;+,(O))*. (29) 
N+=3 

Within this approach they have been able to calculate the correlation (ST ( f )S ;+ ,  (0)) for 
large n and T = 0. Unfortunately this method is very difficult to use at finite tempera- 
ture. 

Equation (28) can also be written in the form 

(S;(t)S;+n(0)) = (exp(iH-t)S; exp( -iH-t)O(t)S;+n), 

O(t)  = exp(iH-t) exp( -iH+t). 

(30) 

(31) 

where 

Capel et a1 (1974) have expanded this operator in powers of t and consequently 
equation (30) can be written as a power series. They have also proved that the series 
converges although it is very difficult to sum. This approach is very useful when we are 
interested in short-time behaviour. 

3. The c-cyclic approximation 

The so-called c-cyclic approximation (Mazur and Siskens 1973, 1974) consists of 
approximating the operator O(t)  by the identity. This means that in this approximation 
the correlation (30) is written as 

(Sy(t )S;+, ,  (0)) = (exp(iH-t)S; exp( - iH-t)S;+,,). (32) 
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Since we are considering the closed chain and assuming that the approximation does not 
break the translational symmetry, the correlation (S;(t)Si*-cn(0)) depends only on n and 
we can consider j equal to one. Proceeding in this way and after some rather lengthy 
algebraic manipulations we obtain 

(33) 
where M',+' is the minor of the Toeplitz determinant (Hartwig and Fisher 1969) 

. . .  

. . . . . . . . .  I G(n)  * * 0 G(O) I 
calculated with respect to the (n + 1)th row, jth column, and G(n)  is given by 

1 
N k  2 E k  

The details of this calculation can be found elsewhere (GonCalves 1977). 

@ E k  h cos nka - J cos(n + 1)ka 
G(n)  = - 1 tanh - - 

If in equation (33) we consider the limit h = 0 we obtain 

(35) 

(S;(t)S;+n(0))=$(- l)"(tanh$@J)"(cos Jt-isin Jt tanh$@J), (36) 
whereas the correct result is (McCoy and Wu 1973) 

(S?(t)S;+n(0)) =$(- l)"(tanh $@J)". (37) 
This has also been pointed out by Capel and Siskens (1975), and naturally makes clear 
in this simple limit the importance of the boundary term B. Therefore this approxima- 
tion is very unsatisfactory and cannot be used to describe the dynamics of the real 
system. 

4. The improved c-cyclic approximation 

To obtain a better description of the dynamics of the system we have to treat the 
operator O(t) by a better approximation. If instead of neglecting the difference 
between H+ and H -  we neglect the commutator, we can write 

O(t)  = exp[i(H--H+)t], (38) 
and this constitutes the so-called improved c -cyclic approximation (GonGalves and 
Elliot 1977). This new approximation is indeed an improvement over the previous one, 
although in a rather arbitrary way. 

Equation (38) can be written as 

O(t)=cos Jt-isin JtAIBN 
where 

B. = c? - c. A j  = c; + cj, I I I' 



228 L L GonCalves 

Substituting equation (39) in equation (30) we obtain 

(Sj"(t)S;+"(O)) = (exp(iH-t)S; exp( - iH-t)Sj"+,J cos Jt 

- i sin Jt(exp iH-t)S; exp( - iH-t)AIBNSjX+,J. (42) 
As we see, the first term is the c-cyclic result multiplied by cosJt, and there is an 
additional term which can be calculated in the same way as the first one. The details of 
this calculation can be found elsewhere (GonGalves 1977). Therefore the final result 
considering j = 1 is 

(S?  (W;+n ( 0 ) )  

where N', + I 
1969): 

x [cos Ekt - i sin Ekt tanh (PEk/2)] + i sin Jt( - l)jNLel 

} (43) 
[h cos(j-2)ka - J  cos(j- l )ka]  

Ek 

N =  

is the minor of the shifted Toeplitz determinant (Hartwig and Fischer 

(44) 

Considering equation (43) in the limit h = 0 we obtain 

which is the correct result. This certainly means an improvement over the c-cyclic 
approximation. 

The introduction of the approximation shown in equation (39) implies the loss of the 
translational symmetry. As we shall see below, the variation of (S; ( t )S;+n(0) )  with j is 
only negligible in the high-temperature limit. There is, however, a way to recover the 
translational symmetry, which is to define the time-dependent correlation function as 

Unfortunately this expression cannot easily be evaluated even in the proposed approx- 
imation. Despite the loss of translational symmetry we will look in detail at the function 
(S?(t)S?+n(0))  and compare some of the results with the known exact ones. 

5. Results and discussion 

As mentioned in 5 4, equation (43) gives the exact known result if we consider h = 0. It 
also gives the correct result in the limit J = 0, since in this case H+ is equal to H -  and 
consequently [H+, H-]=  0.  
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Putting n = 0 in equation (43) we obtain the first two moments exactly, at any 
temperature. We also conclude from equation (43)  that at T = CO only the autocor- 
relation differs from zero, which is exact (Brandt and Jacob 1976, Capel and Perk 
1977). 

The autocorrelation function, when the field is equal to the critical field (Pfeuty 
1970), h = J, is written in a simple form, namely 

1 
cos Ekt - i sin (47) 

where 

Ek = 2J sin (ka /2) .  (48) 

If T = 0, the integrals in the equation (47) can be performed exactly and the result 
takes the form (Gradshteyn and Ryzhik 1965) 

( S ; ( f ) S f  (0))=&Jo(2Jf)  cos J f  +J1(2Jf)  sin Jf-2iEo(2Jf)  cos J f  

+i(E1(2Jf)  -E- l (2J f ) )  sin J f ]  (49) 

where the J’s are Bessel functions of the first kind and the E’s are Weber’s functions. 
The asymptotic behaviour of this correlation is given by (Watson 1966) 

( S ; ( f ) S ; ( 0 ) ) - a / f ” 2  (50) 

which disagrees with the exact result obtained by Lajzerowicz and Pfeuty (1975) which 
is 

(s;(f)s;(o)) - a ’ / P 4 .  (5  1) 

Some difference was to be anticipated, since our approximation gives only two correct 
moments. In fact the agreement is better than might have been expected for the 
asymptotic form. 

If T = CO the integral over k in equation (47) can again be performed exactly and the 
result is 

(Sf (f)S’f (0))  = $Jo(2Jf) cos J f  + J 1  (2Jf)  sin J f ] .  

(S; (f)S; (0))  = exp( - J 2 f 2 / 4 ) .  

(52)  

This does not agree with the exact result (Capel and Perk 1977): 

(53)  

More recently Capel and Perk (1977) and Brandt and Jacoby (1976) have been able to 
get exact results at T = CO for arbitrary values of J and h. 

In figures 1,  2 and 3 we show the autocorrelation for different temperatures 
(p  = 2 J / k B T )  and A = J/h.  The real part is symmetric and the imaginary part 
antisymmetric. It should be noticed that as A is increased the Ising case is approached, 
and consequently the real part of the correlation falls off less rapidly and the imaginary 
part decreases. For A greater than 100 the system behaves essentially as the Ising case 
independently of temperature. As the temperature is increased the imaginary part 
decreases, and at T = CO the autocorrelation is real. 
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Figure 1. Self-correlation function at infinite temperature for various A.  

The frequency transform of the time-dependent correlation function defined as 
m 

C,,(w) = exp(iot)(S;(t)S;+,(O)) dt I, 
is immediately obtained from equation (43) and the result is 

(54) 

where 

. 
GL = 

[h  COS(^ - l ) k ~  - J COS j k ~ ] (  - l)jNA+i 
E k  

(57) 

The autocorrelation function and nearest-neighbour correlation function are shown 
in figures 4 and 5 for various A and p. The non-zero values of the transforms are 
restricted to intervals limited by the values f h, f h f 2J which are obtained by adding 
the energy necessary to 'flip' a spin in presence of an Ising interaction, under the action 
of an external field. If A > 1 this implies that there is a gap in the response which for 
positive frequencies is limited by h and 2 J - h .  This is shown in figure 5 for A = 1.5. 
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02 

23 1 

* 

Figure 2. Real part of the self-correlation function at low temperature (p  = 100) for various 
A. 

p.100 

Figure 3. Imaginary part of the self-correlation function at low temperature (p  = 100) for 
various A. 

The spatial Fourier transform of the time-dependent correlation function, 
N 

n = t  
Cq ( t )  = (S; (0)) + 2 C COS n d S ;  ( t ) S ? + n ( O ) ) ,  (58 )  

for various A and wavevector r / 2 a  is shown in figures 6 and 7 for p = 1.0. Since we are 
considering the anti-ferromagnetic case, the correlation increases as we increase the 
wavevector. Unfortunately we have been unable to obtain the asymptotic behaviour of 
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0 w / 2 J  

Figure 4. The frequency transforms of correlation functions at A = 0.5. The full curve is the 
self-correlation function at high temperature p = 0. The broken curve is the self-correlation 
function at low temperature, p = 100. The chain curve is the near-neighbour correlation 
(n = 1) at p = 100. 

x.1 5 

I zp? I- 16 w / 2 J  

Figure 5. As figure 4, for A = 1.5. 

(S; ( t )Sf+ , (O)> (large n), and consequently we cannot obtain the spatial Fourier 
transform at the very low-temperature limit. However it is possible numerically to 
obtain results as low as p = 5 ,  which is lower than the critical temperature obtained 
using the mean-field approximation (for A = 1.5, &-2). 
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. 

t 
Figure 6. Real part of spatial transform for p = 1.0, wavevector ~ / 2 a  and various A.  

01 I 

I 

t 
Figure 7. Imaginary part of spatial transform for p = 1.0, wavevector v /2a  and various A .  

Finally in figures 8 and 9 we present the transform of the spatial Fourier transform 
m 

cq(o) = exp(iwt)C,(t) dt 
-m 

(59) 

for various A and p, and wavevectors 0, via. As discussed previously there is a gap in 
the response for A > 1 as shown in figure 9. These results, as expected, do not depend on 
the wavevector at high temperature (p  = O - l ) ,  and increase with the wavevector as we 
lower the temperature (p  = 1.0). 

Although up to now most of the results seem reasonable, we have naturally to 
discuss the problem of the translational symmetry. This can be easily seen by calculat- 
ing the commutator Green function ((S”,; S:)) which is given by (Parry 1973) 

Due to translational symmetry we have 

((Sf; SEq))= ( S ” ;  Sf)), (61) 
and this implies that ( (S: ;  S?.,)) must be a symmetric function of o. To satisfy this 
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- O a t  

Figure 8. The frequency transforms of the spatial Fourier transforms at A = 0.5. Full and 
broken curves are the transforms of wavevector 0 at p = 0.1 and 1.0 respectively. Trans- 
forms of wavevector ../a at p = 0.1 and 1.0 respectively. 

A+j 

........ 

Figure 9. As figure 8, for A = 1.5 

I 
1.6 w / 2 J  
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condition we conclude immediately from equation (60) that C, (w)  should satisfy 

cq(w)=exP(pw)C,(-@). (62) 
This equation is only satisfied at /3 = 0, and consequently this clearly shows that the 
approximation breaks the translational symmetry at any finite temperature. 

Defining 6, as 

6, (0 1 = w, (0 1 + exp(mJ)Cq ( - 0 )I, 

E = Kc, - c,)/C,l 

(63) 
we see from equation (62) that c, should be equal to Cq, had the translational symmetry 
not been broken. Therefore the parameter E defined as 

(64) 
measures the quality of our approximation with respect to translational symmetry. To 
obtain a good approximation for C,(o), E has to be small. At  p = 0.1, E is less than 

however at p = 1.0 it becomes of order 1, which means that we have to restrict the 
use of the approximation for /3 < 0.1. 

It should be noticed that we cannot at this stage of the calculation restore the 
translational symmetry by simply replacing C, by eq. The redefinition implies among 
other things that the static correlations which are known exactly are no longer correctly 
given by the approximation. 

Finally we would like to paint out that, as mentioned previously, in the c-cyclic 
approximation we considered H+=H- ,  and in the improved one we neglected 
[H', H-1. We can of course continue the calculation, and neglect higher-order terms, 
which are expected to give better approximations. 
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